

Carbohydrate Research 291 (1996) 217-224

Note

Somatic antigens of pseudomonads: Structure of the O-specific polysaccharide of the reference strain for *Pseudomonas fluorescens* (IMV 4125, ATCC 13525, biovar A)

Yuriy A. Knirel ^{a,*}, Galina M. Zdorovenko ^b, Nikolay A. Paramonov ^a, Stanislav P. Veremeychenko ^b, Filip V. Toukach ^a, Alexander S. Shashkov ^a

Received 8 February 1996; accepted 11 June 1996

Keywords: Bacterial polysaccharide; Lipopolysaccharide; O-Antigen, Structure; Pseudomonas; NMR Spectroscopy

Strains of *Pseudomonas fluorescens* are divided into five biovars having undefined taxonomic rank [1]. No serological classification of this bacterium based on the specificity of O-antigens (outer-membrane lipopolysaccharides) has been elaborated. Recently [2,3], we have shown that the O-specific polysaccharide chains of the lipopolysaccharides of two strains of *P. fluorescens* belonging to the same biovar A have quite different structures. We now report the structure of the O-specific polysaccharide of *P. fluorescens* strain IMV 4125 (ATCC 13525), which is the reference strain for the species and also belongs to biovar A.

The lipopolysaccharide was isolated by the phenol-water procedure [4] and cleaved with dilute acetic acid to give the O-specific polysaccharide. Sugar analysis after full acid hydrolysis of the polysaccharide revealed the presence of L-rhamnose and 3-amino-

^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, 117913 Moscow, Russian Federation

^b D.K. Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, ul. Zabolotnogo 156, Kiev 143, Ukraine

^{*} Corresponding author.

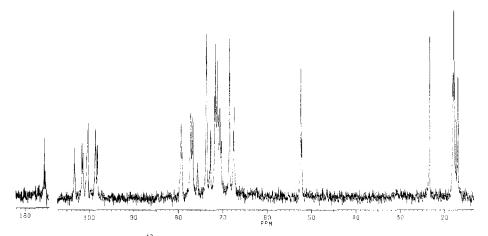


Fig. 1. ¹³C NMR spectrum of the O-specific polysaccharide.

3,6-dideoxy-D-galactose (Fuc3N) which were identified by GLC and GLC-MS of alditol acetates [5,6] and GLC of acetylated glycosides with (S)-2-octanol [7].

The 13 C NMR spectrum of the polysaccharide (Fig. 1) contained a number of signals with different intensities, pointing to the absence of strict regularity or the presence of more than one polysaccharide. There were present, inter alia, signals for C-6 of rhamnose at δ 17.7–18.1 and C-6 of Fuc3N at δ 16.9–17.3 (intensity ratio 2.6:1), for C-3 of Fuc3N at 52.1–52.3, and *N*-acetyl groups at δ 23.3 (CH₃) and 175.5–175.8 (CO). Therefore, Fuc3N in the polysaccharide is *N*-acetylated.

Accordingly, the ¹H NMR spectrum of the polysaccharide (Fig. 2) contained signals for H-6 of rhamnose and Fuc3NAc at δ 1.20–1.35 (superposition of a number of doublets, $J_{5,6}$ 6–6.5 Hz), and for *N*-acetyl groups at δ 2.05–2.06 (singlets). As judged by the ratio of the intensities of the signals for H-6 and NAc, the ratio of rhamnose and Fuc3NAc was 2.5:1.

Methylation analysis of the polysaccharide, including GLC-MS of derived alditol acetates, led to the identification of 2,4-di-O-methylrhamnose, 3,4-di-O-methylrhamnose, and 4-O-methylrhamnose in the ratios 1:1.5:2.5, as well as 3,6-dideoxy-2,4-di-O-methyl-3-(N-methylacetamido)galactose. The mass spectrum of the latter was identical to that of the same derivative of Fuc3NAc derived from the O-specific polysaccharide of Pseudomonas syringae pv. tabaci IMV 223 [8]. These data suggested that the polysaccharide is branched, with lateral Fuc3NAc residues, the rhamnose residues at the branching points are 2,3-disubstituted, and the remaining rhamnose residues are 2- or 3-substituted, all the monosaccharides occurring in the pyranoid form.

Smith degradation of the polysaccharide afforded a number of oligosaccharide products, which were fractionated by gel-permeation chromatography on TSK HW-40 followed by HPLC on reversed-phase C18. As a result, three main fractions were isolated in comparable amounts, two of which (fractions 1 and 3) were pure compounds 1 and 2, and the third (fraction 2) was a mixture of oligosaccharide—alditols.

Table 1

13 C NMR data (in ppm) a

C NMR data (in ppm)	C-1	C-2	C-3	C-4	C-5	C-6
	C-1	C-2				
Trisaccharide-glycerol 1	00.4	45.0	-a		60.4	165
α -D-Fuc p 3NAc-(1 \rightarrow	98.6	67.2	52.5	71.7	68.4	16.5
\rightarrow 2)- α -L-Rha p -(1 \rightarrow (I)	101.1	77.5	70.3	73.2	70.8	17.9
\rightarrow 3)- α -L-Rha p -(1 \rightarrow (II)	100.6	71.5	79.7	72.7	70.9	17.9
→ 2)-Gro	62.7	79.9	61.5			
Tetrasaccharide-glycerol 2						
α -D-Fuc p 3NAc-(1 \rightarrow (I)	98.5	67.2	52.4	71.7	68.4	16.5
α -D-Fuc p 3NAc-(1 \rightarrow (II)	98.5	67.3	52.3	71.6	68.5	17.1
\rightarrow 2)- α -L-Rha p -(1 \rightarrow (I)	100.6	77.3	71.0	73.6	70.7	17.9
\rightarrow 3)- α -L-Rha p -(1 \rightarrow (II)	97.9	77.2	77.2	73.1	70.9	17.6
↑		=0.0				
→ 2)-Gro	62.6	79.9	61.6			
O-Specific polysaccharide of I	^o seudomonas _.	fluorescens	MV 4125			
Oligosaccharide unit 3			50.0	71.	60.4	14.0
α -D-Fuc p 3NAc-(1 \rightarrow	98.5	67.3	52.3	71.6	68.4	16.9
\rightarrow 3)- α -L-Rha p -(1 \rightarrow	100.2	77.2	76.6	73.6	70.8	18.0
↑						
\rightarrow 3)- α -L-Rha p -(1 \rightarrow	103.2	71.3	79.3	72.7	70.8	17.9
\rightarrow 2)- α -L-Rha p -(1 \rightarrow	101.5	79.3	71.2	73.6	70.9	17.9
Oligosaccharide unit 4						
α -D-Fuc p 3NAc-(1 \rightarrow (I)	98.4	67.3	52.3	71.6	68.4	16.9
α -D-Fuc p 3NAc-(1 \rightarrow (II)	98.0	67.5	52.1	71.8	68.4	17.3
\rightarrow 3)- α -L-Rha p -(1 \rightarrow (I)	100.3	77.1	76.6	73.6	70.8	18.1
2	100.5	. , , , , ,	70.0	75.0	70.0	
↑						
\rightarrow 3)- α -L-Rha p -(1 \rightarrow (II)	101.3	79.0	77.1	73.6	71.0	17.9
2						
↑						
\rightarrow 2)- α -L-Rha p -(1 \rightarrow	101.5	79.3	71.2	73.6	70.9	17.9
O-Specific polysaccharide of	Pseudomonas	tabaci IMV	223 b			
α -D-Fuc p 3NAc-(1 \rightarrow	98.3	67.2	52.3	71.5	68.4	16.8
→ 3)-α-L-Rha p-(1 →	100.2	77.0	76.5	73.5	70.9	17.9
2 2	100.2	11.0	10.5	13.3	10.7	11.7
†						
\rightarrow 3)- α -L-Rha p -(1 \rightarrow	103.0	71.1	79.2	72.6	70.5	17.7
\rightarrow 2)- α -L-Rha p -(1 \rightarrow	101.5	79.1	71.1	73.6	70.5	17.7
- 2, a-L-Mia p-(1 -	101.5	17.1	/ 1 , 1	7.5.0	10.5	11.1

^a Assignment of the signals with the difference between chemical shifts < 1 ppm could be interchanged. Chemical shifts for NAc are δ 23.3 (Me) and 175.5-175.8 (CO).

Sugar analysis and the ¹³C and ¹H NMR spectra (Tables 1 and 2) showed that 1 contains two residues of rhamnose and one residue each of Fuc3NAc and glycerol, and that 2 differs from 1 in the presence of an additional Fuc3NAc residue. Therefore, 1 and 2 are a trisaccharide–glycerol and a tetrasaccharide–glycerol, respectively.

^b Data from ref. [8].

Table 2				
¹ H NMR	data	(in	ppm)	a

	H-1	H-2	H-3	H-4	H-5	H-6
Trisaccharide-glycerol 1			~	*****		
α -D-Fuc $p3NAc$ -(1 \rightarrow	4.95	3.79	4.18	3.73	4.38	1.15
\rightarrow 2)- α -L-Rha p -(1 \rightarrow (I)	5.12	4.05	3.85	3.52	3.83	1.27
\rightarrow 3)- α -L-Rha p -(1 \rightarrow (II)	4.92	4.05	3.92	3.54	3.82	1.25
Tetrasaccharide-glycerol 2						
α -D-Fuc p 3NAc-(1 \rightarrow (I)	4.93	3.78	4.18	3.71	4.36	1.14
α -D-Fuc p 3NAc-(1 \rightarrow (II)	5.00	3.77	4.19	3.72	4.27	1.20
\rightarrow 2)- α -L-Rha p -(1 \rightarrow (I)	5.22	4.05	3.86	3.56	3.77	1.28
\rightarrow 3)- α -L-Rha p -(1 \rightarrow (II)	5.07	4.04	4.00	3.68	3.81	1.25
†						

^a Chemical shifts for NAc are δ 2.00-2.02.

The ¹H NMR spectra of **1** and **2** were analysed using 2D correlation spectroscopy (COSY), COSY with one-step relayed coherence transfer, and sequential, selective spin decoupling, and the signals for the sugar units were completely assigned (Table 2). The coupling constants $J_{1,2}$ 3.5–4 Hz showed that the Fuc3NAc residues are α -linked. The α configuration of the rhamnosidic linkages followed from the chemical shifts of the signals for H-5 (δ 3.77–3.83; cf. δ 3.86 for the H-5 resonance in α -Rha, but 3.39 in β -Rha [9]).

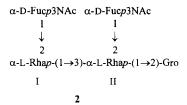
In the 2D rotating-frame NOE (ROESY) spectrum of 1, there were present interresidue cross-peaks Fuc3NAc H-1,Rha I H-1,2 at δ 4.95/5.12 and 4.95/4.05, respectively, and Rha I H-1,Rha II H-3 at δ 5.12/3.92. In addition, intraresidue cross-peaks H-1,2 were observed for all three sugar residues, which were in accord with the configuration of their glycosidic linkages. Rha II H-1 at δ 4.92 gave only a weak interresidue cross-peak near δ 3.7, which could be assigned to the Rha II H-1,Gro H-2 correlation.

These data suggested that the trisaccharide–glycerol 1 has the following structure:

$$\alpha$$
-D-Fuc p 3NAc

1

 \downarrow
2


 α -L-Rha p -(1 \rightarrow 3)- α -L-Rha p -(1 \rightarrow 2)-Gro

I

I

Similarly, a 2D ROESY experiment with **2** revealed the interresidue correlations between Fuc3NAc I H-1,Rha I H-1,2 (cross-peaks at δ 4.93/5.22 and 4.93/4.05, respectively), Fuc3NAc II H-1,Rha II H-1,2 (δ 5.00/5.07 and 5.00/4.04, respectively),

and Rha I H-1,Rha II H-3 at δ 5.22/4.00. These data pointed to the following structure of the tetrasaccharide–glycerol 2:

The structures of 1 and 2 were in accord with the ¹³C NMR data (Table 2), which were tentatively assigned using published data for the corresponding monosaccharides and glycosylation effects [8–10] and for structurally related carbohydrates [8,11–13].

As judged by the 13 C NMR spectrum, fraction 2 was a mixture of several compounds, among which 1 and an oligosaccharide-rhamnitol were identified. The latter displayed characteristic signals at δ 61.9 and 20.2, respectively, typical of C-1 and C-6 of a 2-substituted rhamnitol residue, which resulted evidently from overhydrolysis in the course of Smith degradation.

Analysis of the ^TH NMR spectrum of the polysaccharide (Fig. 2) using 2D COSY showed, in particular, that the signals for H-5 were in the region δ 3.75–3.90 for rhamnose residues and δ 4.30–4.40 for Fuc3NAc residues (there were present crosspeaks for Rha H-5,H-6 at δ 3.75–3.90/1.22–1.34 and for Fuc3NAc H-5,H-6 at δ 4.30–4.40/1.20–1.28). Therefore, all monosaccharide residues in the polysaccharide are α -linked, including the rhamnose residues which are oxidised during Smith degradation (cf. the published chemical shifts for H-5 3.86 in α -Rha and δ 4.20 in α -Fuc, but δ 3.39 in β -Rha and δ 3.79 in β -Fuc [9]).

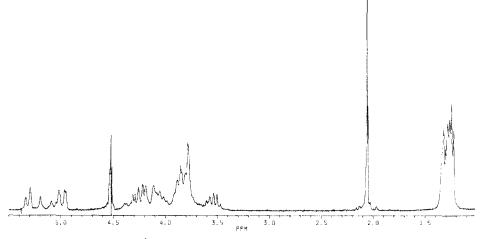
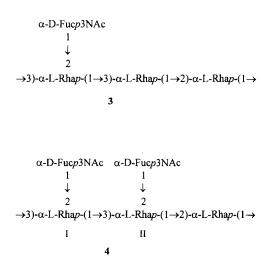



Fig. 2. ¹H NMR spectrum of the O-specific polysaccharide.

Assignment of the ¹³C NMR spectrum of the polysaccharide (Table 2) was performed using the data for the oligosaccharide–glycerols 1 and 2 and the O-specific polysaccharide of *Pseudomonas syringae* pv. *tabaci* IMV 223, which is built up of tetrasaccharide repeating units 3 [8]. The resonance pattern for the unit 3 could easily be recognised in the spectrum, and the rest of the signals could be assigned to the unit 4 differing from the unit 3 in the presence of the second Fuc3NAc residuc (cf. the structures of the Smith-degraded products 1 and 2).

Therefore, it can be concluded that the O-specific polysaccharide of the reference strain for *P. fluorescens* (IMV 4125, ATCC 13525) is not strictly regular and consists mainly of two types of oligosaccharide repeating units having the structures 3 and 4, or that there are two structurally related regular polysaccharides built up of the repeating units 3 and 4. As judged by the ratio of rhamnose and Fuc3NAc determined by sugar analysis and ¹H and ¹³C NMR spectroscopy, the ratio of the partially methylated derivatives of rhamnose revealed in methylation analysis, and the ratio of the oligosaccharide–glycerols obtained by Smith degradation, the tetrasaccharide repeating unit 3 is slightly predominant and, by various estimations, amounts to 60% of the total.

While the repeating unit 4 is unique for the polysaccharide studied, the repeating unit 3, as mentioned above, has been reported previously in the O-antigen of *Pseudomonas syringae* pv. tabaci IMV 223 [8]. An isomeric repeating unit with the same main chain and Fuc3NAc attached at position 3 of the 2-substituted rhamnose residue has been found in the O-specific polysaccharide of *P. syringae* pv. tomato 140(R) [11]. Both these are strictly regular polysaccharides, while structural heterogeneity has been reported for another group of structurally related O-specific polysaccharides of *P. syringae*, which are built up of pentasaccharide repeating units containing four rhamnose residues and one residue of Fuc3NAc [12–14]. However, their heterogeneity is of another sort associated with different positions of substitution of the rhamnose residues in the main chain and different sites of attachment of Fuc3NAc. In addition to *P.*

syringae, structurally heterogeneous O-antigens have been found also in *P. aeruginosa* and a number of *Burkholderia* (former *Pseudomonas*) species [15] but have not been reported hitherto for *P. fluorescens*.

No structural similarity is observed between the O-specific polysaccharide of the reference strain of *P. fluorescens* biovar A and those of two other *P. fluorescens* biovar A strains studied by us earlier [2,3].

1. Experimental

Isolation of the O-specific polysaccharide.—P. fluorescens strain IMV 4125 (ATCC 13525) was grown as described [16]. The lipopolysaccharide was extracted from dry bacterial cells by the phenol—water procedure [4] and degraded with aq 1% AcOH at $100~^{\circ}$ C for 3 h. After removal of a lipid precipitate, the carbohydrate portion was fractionated by gel-permeation chromatography on a column ($70 \times 3.5~\text{cm}$) of Sephadex G-50 in pyridinium acetate buffer (pH 4.5) to give the O-specific polysaccharide eluted close to the void volume of the column.

Sugar and methylation analysis.—The polysaccharide was hydrolysed with 2 M CF₃CO₂H (120 °C, 2 h), and sugars were conventionally converted into alditol acetates [5] and analysed by GLC on a Hewlett–Packard Model 5971 A chromatograph equipped with a glass capillary column (12 m \times 0.2 mm) of HP-1 as stationary phase, using a temperature program of 150–270 °C at 8 °C/min, and by GLC–MS on a Hewlett–Packard Model 7985 instrument operating at 70 eV and equipped with a capillary column of cross-linked SPBTM-5.

Methylation was carried out by the Hakomori method [17]. The methylated products were hydrolysed as in the sugar analysis and the resulting partially methylated monosaccharides were analysed by GLC-MS as alditol acetates under the conditions described above. Mass spectra of partially methylated alditol acetates were interpreted using published data [18].

Smith degradation.—The polysaccharide (20 mg) was oxidised with 0.1 M NaIO₄ (1.5 ml) for 40 h at ambient temperature in the dark, and the excess of the oxidant was reduced with a drop of ethylene glycol. The product was reduced conventionally with an excess of NaBH₄, desalted by gel filtration on a column (1.6 \times 80 cm) of TSK HW-40 (S), hydrolysed with aq 2% AcOH, reduced with NaBH₄, then desalted and fractionated on TSK HW-40 (S). The oligosaccharides obtained were fractionated by HPLC on a semi-preparative reversed-phase C18 column in water to give trisaccharide—glycerol 1 (1.4 mg, fraction 1), an intermediate mixed fraction 2 (1.1 mg), and tetrasaccharide—glycerol 2 (1.3 mg, fraction 3).

NMR spectroscopy.—The 1 H NMR and 13 C NMR spectra were obtained with a Bruker AM-300 instrument in D_2O at 50 °C (1 H) or 60 °C (13 C) for the polysaccharide and 60 °C (14 H) or 30 °C (13 C) for oligosaccharides. Acetone was used as internal standard (δ_H 2.225, δ_C 31.45). Selective spin-decoupling was carried out by difference mode according to the modified procedure [19]. 2D COSY and 2D ROESY experiments were performed using standard Bruker software. A mixing time of 200 ms was used in the ROESY experiment.

References

- [1] N. Palleroni, in J.G. Holt (Ed.), *Bergey's Manual of Systematic Bacteriology*, Vol. 1, Williams and Wilkins, Baltimore, 1984, pp 141–219.
- [2] Y.A. Knirel, N.A. Paramonov, A.S. Shashkov, N.K. Kochetkov, G.M. Zdorovenko, S.N. Veremey-chenko, and I.Y. Zakharova, *Carbohydr. Res.*, 243 (1993) 20–210.
- [3] Y.A. Knirel, S.N. Veremeychenko, G.M. Zdorovenko, A.S. Shashkov, N.A. Paramonov, I.Y. Zakharova, and N.K. Kochetkov, *Carbohydr. Res.*, 259 (1994) 147–151.
- [4] O. Westphal and K. Jann, Methods Carbohydr. Chem., 5 (1965) 83-91.
- [5] J.S. Sawardeker, J.H. Sloneker, and A. Jeanes, Anal. Chem., 37 (1965) 1602-1603.
- [6] H. Bjorndal, C.G. Hellerqvist, B. Lindberg, and S. Svensson, Angew. Chem., 82 (1970) 643-646.
- [7] K. Leontein, B. Lindberg, and J. Lönngren, Carbohydr. Res., 62 (1978) 359-362.
- [8] A.S. Shashkov, G.M. Zdorovenko, E.D. Daeva, L.M. Yakovleva, L.P. Solyanik, R.I. Gvozdyak, Y.A. Knirel, and N.K. Kochetkov, *Bioorg. Khim.*, 16 (1990) 90–97.
- [9] P.-E. Jansson, L. Kenne, and G. Widmalm, Carbohydr. Res., 188 (1989) 169-191.
- [10] G.M. Lipkind, A.S. Shashkov, Y.A. Knirel, E.V. Vinogradov, and N.K. Kochetkov, Carbohydr. Res., 175 (1988) 59–75.
- [11] Y.A. Knirel, A.S. Shashkov, N.A. Paramonov, G.M. Zdorovenko, L.P. Solyanik, and L.M. Yakovleva, Carbohydr. Res., 243 (1993) 199–204.
- [12] Y.A. Knirel, G.M. Zdorovenko, A.S. Shashkov, L.M. Yakovleva, N.Y. Gubanova, and R.I. Gvozdyak, Bioorg. Khim., 14 (1988) 172–179.
- [13] Y.A. Knirel, G.M. Zdorovenko, A.S. Shashkov, S.S. Mamyan, N.Y. Gubanova, L.M. Yakovleva, and L.P. Solyanik, *Bioorg. Khim.*, 14 (1988) 180–186.
- [14] S. Das, M. Ramm, H. Kochanowski, and S. Basu, J. Bacteriol., 176 (1994) 6550-6557.
- [15] Y.A. Knirel and N.K. Kochetkov, *Biochemistry (Moscow)*, 59 (1994) 1784–1851.
- [16] G.M. Zdorovenko, S.N. Veremeychenko, and I.Y. Zakharova, Mikrobiol. Zh., 49 (1987) 12-17.
- [17] H.E. Conrad, Methods Carbohydr. Chem., 6 (1972) 361-364.
- [18] P.-E. Jansson, L. Kenne, B. Lindberg, H. Liedgren, and J. Lönngren, Chem. Commun. Univ. Stockholm, (1976) 1–75.
- [19] N.A. Kocharova, Y.A. Knirel, A.S. Shashkov, N.K. Kochetkov, and G. Pier, J. Biol. Chem., 263 (1988) 11291–11295.